Subversion Repositories svnkaklik

Compare Revisions

No changes between revisions

Ignore whitespace Rev 408 → Rev 409

/programy/avr32/SID/fftw3/compile
0,0 → 1,0
$ ./configure CC=avr32-linux-gcc --host=avr32 --with-gcc-arch=ap --disable-fortran --prefix=/usr/avr32-linux/
/programy/avr32/SID/sidd
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
Property changes:
Added: svn:executable
+*
\ No newline at end of property
Added: svn:mime-type
+application/octet-stream
\ No newline at end of property
/programy/avr32/SID/README
0,0 → 1,155
Installation and setup notes for sidd-0.93, 15th March 2005.
------------------------------------------------------------
 
You have unpacked the tgz file and have 3 files:-
 
* README - this one
* sidd.c - source code
* sidd.conf - a sample configuration file.
 
Installation steps
------------------
* 1/
You will need FFTW3 from www.fftw.org, if not already installed.
 
* 2/
Compile the sidd source with
 
gcc -Wall -O4 -ffast-math -DPENTIUM -Wall -o sidd sidd.c -lfftw3 -lm
 
which produces an executable sidd in the current directory.
 
* 3/
Edit sidd.conf to suit your requirements.
 
* 4/
Start sidd in verbose foreground mode with the command
 
./sidd -vf
 
* 5/
Examine the log file - it should look something like
 
2005/03/15 20:03:17 logfile /root/sidd.log
2005/03/15 20:03:17 los threshold 0.060, timeout 5 seconds
2005/03/15 20:03:17 band LB 18200 18400
2005/03/15 20:03:17 band AN 19480 19680
2005/03/15 20:03:17 band SK 22050 22150
2005/03/15 20:03:17 band BG 23300 23500
2005/03/15 20:03:17 band TV 20190 20340
2005/03/15 20:03:17 band NV 16300 16500
2005/03/15 20:03:17 band B1 20800 21000
2005/03/15 20:03:17 band B2 22650 22850
2005/03/15 20:03:17 requesting line input gains left=77 right=100
2005/03/15 20:03:17 line input gains set to: left=77 right=100
2005/03/15 20:03:17 taking data from [/dev/dsp]
2005/03/15 20:03:17 requesting rate 48000
2005/03/15 20:03:17 actual rate set: 48662 samples/sec
2005/03/15 20:03:17 soundcard channels: 1 bits: 16
2005/03/15 20:03:17 resolution: bins=2048 fftwid=4096 df=11.880371
2005/03/15 20:03:17 spectrum file: /tmp/sidspec
2005/03/15 20:03:17 using SCHED_FIFO priority 1
2005/03/15 20:03:17 sidd version 0.93: starting work
2005/03/15 20:03:17 using output file [./050315.dat]
 
* 6/
Now tail the output file (in my example, ./050315.dat). The first
three columns are the timestamp (seconds from 01/01/1970), peak signal
level (range 0 to 1), and rms signal level (also range 0 to 1).
 
Adjust your mixer gain settings so that the peak hovers around the
range 0.1 to 0.5 (the rms will be around 1/2 or 1/3 of the peak, depending
on your level of impulsive noise and sferics).
 
* 7/
Plot the spectrum file, in my case /tmp/sidspec. This file is two columns,
bin centre frequency in Hz, and relative power. The file is re-written by
sidd every 10 seconds or so, depending on your sidd.conf settings. Adjust
antennas, receivers, etc to obtain desired signal to noise ratios. You
may want to reconsider the band settings in sidd.conf at this point too.
 
* 8/
Once you're happy with the gain settings, stop sidd and run it again with
the command
 
./sidd -m
 
This will read and display the applicable mixer gain settings. Now edit
your sidd.conf, commenting in the gain commands and putting in your gain
settings. Then, whenever sidd starts, it will setup the mixer with these
settings. All mixers will have a line input gain control, but only some
will have an overall input gain control and/or a record level control.
The -m option will report what you need to put in the config file.
 
* 9/
Set your PC clock and activate your favourite time synchronisation
software. Make sure it slews the clock rather than stepping the time.
 
* 10/
Restart sidd in background with
 
./sidd -v
 
Inspect the log file to make sure your mixer settings have been applied.
 
* 11/
After a period of time, plot some of the data from the output file.
Output file columns 4 onwards correspond to the 'band' commands in the
order they appear in sidd.conf. Each column is a total relative power,
so you will need to apply a square root function during plotting if you
want to display relative amplitudes.
 
* 12/
After a midnight crossing, make sure sidd has switched to the next
output file.
 
Command line options
--------------------
There are just a few command line options - most controls are
in the config file.
 
-v Be a little more verbose with log messages.
-f Run in foreground. By default, sidd detaches from the process
group and terminal and becomes a daemon. In foreground mode,
log messages are duplicated to stderr.
-m Interrogate the soundcard mixer and report settings, then exit.
This option overrides any others.
 
Miscellaneous notes
-------------------
*
sidd will set the soundcard to the nearest available sample rate to that
specified in sidd.conf
 
*
Make sure you have enough disk space. The example sidd.conf with 8 bands
generates files of about 100Mbytes per day, which compress down to about
30Mbytes. Arrange scripts for plotting. Arrange scripts for compressing
and archiving files that are a few days old.
 
*
You can specify an ordinary file or a pipe as the input 'device' instead
of /dev/dsp. In this case, you must set the sample rate in sidd.conf
to whatever the actual sample rate is. sidd is looking for unsigned bytes
in 8 bit mode, or signed words in 16 bit mode.
 
*
Once sidd has started up and set the mixer gains, it no longer takes any
notice of the mixer. Therefore once sidd is running, a rogue user can
mess things up by twiddling the mixer settings with Xmixer or some other
utility. Kill off any mixer control panels to avoid the risk of any upset.
 
*
If your PC is set to autoboot after a power outage, you might want to put
a startup command for sidd into /etc/rc.d/rc.local or similar - but make
sure the RTC setting commands are done first.
 
Revisions
---------
v0.9: Original.
v0.91: Fixes a header file problem with some gcc.
No longer produces a static binary.
v0.93: Another bug fixed.
Added control of mixer input and gains.
Added stereo mode to make a 2 channel monitor.
 
/programy/avr32/SID/sidd.c
0,0 → 1,928
//
// sidd.c: A VLF signal monitor.
//
// author: Paul Nicholson, paul@abelian.demon.co.uk
//
 
#include <stdlib.h>
#include <unistd.h>
#include <math.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <sys/param.h>
#include <fcntl.h>
#include <errno.h>
#include <stdarg.h>
#include <ctype.h>
#include <string.h>
#include <signal.h>
#include <time.h>
#include <sched.h>
#include <linux/soundcard.h>
 
#include <fftw3.h>
 
///////////////////////////////////////////////////////////////////////////////
// Tuneable Settings //
///////////////////////////////////////////////////////////////////////////////
 
#define VERSION "0.93"
 
//
// Number of soundcard bytes to read at a time.
#define NREAD 2048
 
//
// Max number of bands which can be read from the config file.
#define MAXBANDS 20
 
//
// Name of the configuration file.
#define CONFIG_FILE "sidd.conf"
 
///////////////////////////////////////////////////////////////////////////////
// Globals and fixed definitions //
///////////////////////////////////////////////////////////////////////////////
//
// Default values here are over-ridden by the config file.
 
int mode = 1; // 1 = mono, 2 = stereo
int bits = 16; // Sample width, 8 or 16 bits
int BINS = 2048; // Number of frequency bins
#define FFTWID (2 * BINS) // Number of samples in FFT period
 
int background = 1; // Set zero if running in foreground
int fdi; // Input file handle
int fdm; // Mixer file handle
int VFLAG = 0; // Set non-zero by -v option
int MFLAG = 0; // Set non-zero by -m option
 
int spec_max = 100; // Issue a spectrum for every spec_max output records
int spec_cnt = 0;
int sample_rate = 100000; // Samples per second
 
int chans = 1;
int alert_on = 0;
 
int priority = 0; // Set to 1 if high scheduling priority
struct sigaction sa;
char mailaddr[100];
 
double los_thresh = 0; // Threshold for loss of signal, 0..1
int los_timeout = 0; // Number of seconds before loss of signal declared
 
double DF; // Frequency resolution of the FFT
int bailout_flag = 0; // To prevent bailout() looping
int grab_cnt = 0; // Count of samples into the FFT buffer
 
// Mixer gain settings requested by config file.
int req_lgain = -1; // Line gain
int req_igain = -1; // Input gain
int req_rgain = -1; // Record level
 
//
// Various filenames, contents set by config file.
//
char logfile[100] = "";
char device[100] = "/dev/dsp";
char mixer[100] = "/dev/mixer";
char spectrum_file[100] = "/tmp/sidspec";
char datadir[100] = ".";
 
//
// Table of frequency bands to monitor
//
 
struct BAND
{
char ident[50];
 
int start;
int end;
}
bands[MAXBANDS]; // Table of bands to be monitored
 
int nbands = 0;
 
//
// Independent state variables and buffers for left and right channels
//
struct CHAN
{
char *name;
double *signal_avg;
double *powspec;
double *fft_inbuf;
fftw_complex *fft_data;
fftw_plan ffp;
double peak;
double sum_sq;
int los_state;
time_t los_time;
FILE *fo;
char fname[100];
}
left = { "left" }, right = { "right" };
 
///////////////////////////////////////////////////////////////////////////////
// Various Utility Functions //
///////////////////////////////////////////////////////////////////////////////
 
//
// Issue a message to the log file, if the verbosity level is high enough...
//
 
void report( int level, char *format, ...)
{
va_list ap;
void bailout( char *format, ...);
char temp[ 200];
 
if( VFLAG < level) return;
 
va_start( ap, format);
vsprintf( temp, format, ap);
va_end( ap);
 
if( !logfile[0] || !background)
if( background != 2) fprintf( stderr, "%s\n", temp);
 
if( logfile[0])
{
time_t now = time( NULL);
struct tm *tm = gmtime( &now);
FILE *flog = NULL;
if( (flog = fopen( logfile, "a+")) == NULL)
bailout( "cannot open logfile [%s]: %s", logfile, strerror( errno));
fprintf( flog, "%04d/%02d/%02d %02d:%02d:%02d %s\n",
tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec, temp);
fclose( flog);
}
}
 
void alert( char *format, ...)
{
FILE *f;
va_list( ap);
char cmd[100], temp[100];
 
va_start( ap, format);
vsprintf( temp, format, ap);
va_end( ap);
report( -1, "%s", temp);
 
if( !alert_on || !mailaddr[0]) return;
 
sprintf( cmd, "mail -s 'sidd alert' '%s'", mailaddr);
if( (f=popen( cmd, "w")) == NULL)
{
report( 0, "cannot exec [%s]: %s", cmd, strerror( errno));
return;
}
 
fprintf( f, "sidd: %s\n", temp);
fclose( f);
}
 
//
// We try to exit the program through here, if possible.
//
 
void bailout( char *format, ...)
{
va_list ap;
char temp[ 200];
 
if( bailout_flag) exit( 1);
bailout_flag = 1;
va_start( ap, format);
vsprintf( temp, format, ap);
va_end( ap);
 
alert( "terminating: %s", temp);
exit( 1);
}
 
//
// Exit with a message if we get any signals.
//
 
void handle_sigs( int signum)
{
bailout( "got signal %d", signum);
}
 
///////////////////////////////////////////////////////////////////////////////
// Soundcard Setup //
///////////////////////////////////////////////////////////////////////////////
 
//
// Prepare the input stream, setting up the soundcard if the input
// is a character device.
//
 
void setup_input_stream( void)
{
struct stat st;
 
report( 1, "taking data from [%s]", device);
 
if( (fdi = open( device, O_RDONLY)) < 0)
bailout( "cannot open [%s]: %s", strerror( errno));
 
if( fstat( fdi, &st) < 0)
bailout( "cannot stat input stream: %s", strerror( errno));
 
if( S_ISCHR( st.st_mode))
{
int blksize;
int fragreq = 0x7fff000a;
unsigned int format;
unsigned int req_format = AFMT_S16_LE;
if( bits == 8) req_format = AFMT_U8;
 
if (ioctl( fdi, SNDCTL_DSP_SETFRAGMENT, &fragreq))
report( 01, "cannot set fragment size");
 
if( ioctl( fdi, SNDCTL_DSP_RESET, NULL) < 0)
bailout( "cannot reset input device");
 
chans = mode;
if( ioctl( fdi, SNDCTL_DSP_CHANNELS, &chans) < 0)
bailout( "cannot set channels on input device");
 
if( ioctl( fdi, SNDCTL_DSP_GETFMTS, &format) < 0)
bailout( "cannot get formats from input device");
 
report( 2, "formats available: %08X", format);
if( (format & req_format) == 0)
{
report( 0, "available dsp modes are %08X", format);
bailout( "unable to set %d bit dsp mode", bits);
}
 
format = req_format;
if( ioctl( fdi, SNDCTL_DSP_SETFMT, &format) < 0)
bailout( "cannot set dsp format on input device");
 
if( ioctl( fdi, SNDCTL_DSP_GETBLKSIZE, &blksize) < 0)
bailout( "cannot get block size from input device");
 
report( 2, "dsp block size: %d", blksize);
if( ioctl( fdi, SNDCTL_DSP_CHANNELS, &chans) < 0)
bailout( "cannot get channels from input device");
 
report( 1, "requesting rate %d", sample_rate);
if( ioctl( fdi, SNDCTL_DSP_SPEED, &sample_rate) < 0)
bailout( "cannot set sample rate of input device");
 
report( 1, "actual rate set: %d samples/sec", sample_rate);
report( 1, "soundcard channels: %d bits: %d", chans, bits);
}
}
 
///////////////////////////////////////////////////////////////////////////////
// Output Functions //
///////////////////////////////////////////////////////////////////////////////
 
void maybe_output_spectrum( void)
{
FILE *f;
int i;
 
if( ++spec_cnt < spec_max) return; // Wait for spec_max records
spec_cnt = 0;
 
if( !spectrum_file[0]) return; // Spectrum file not wanted.
 
if( (f=fopen( spectrum_file, "w+")) == NULL)
bailout( "cannot open spectrum file %s, %s", strerror( errno));
 
if( mode == 1){
fprintf( f, "Frequency PowerL \n");
for( i=0; i<BINS; i++) fprintf( f, "%.5e %.5e\n",
(i+0.5) * DF, left.signal_avg[i]/spec_max);}
else{
fprintf( f, "Frequncy PowerL PowerR \n");
for( i=0; i<BINS; i++) fprintf( f, "%.5e %.5e %.5e\n",
(i+0.5) * DF, left.signal_avg[i]/spec_max,
right.signal_avg[i]/spec_max);}
fclose( f);
 
for( i=0; i<BINS; i++) left.signal_avg[i] = 0;
if( mode == 2) for( i=0; i<BINS; i++) right.signal_avg[i] = 0;
}
 
void output_record( struct CHAN *c, char *prefix, double fsecs)
{
int i, j;
char test[100];
 
if( mode == 1)
sprintf( test, "%s.dat", prefix);
else
sprintf( test, "%s.%s.dat", prefix, c->name);
if( !c->fo || strcmp( test, c->fname))
{
if( c->fo) fclose( c->fo);
strcpy( c->fname, test);
report( 0, "using output file [%s]", c->fname);
if( (c->fo=fopen( c->fname, "a+")) == NULL)
bailout( "cannot open [%s], %s", c->fname, strerror( errno));
}
 
fprintf( c->fo, "%.3f %.3f %.3f", fsecs, c->peak, sqrt( c->sum_sq/FFTWID));
 
for( i=0; i<nbands; i++)
{
double e = 0;
int n1 = bands[i].start/DF;
int n2 = bands[i].end/DF;
for( j=n1; j<= n2; j++) e += c->powspec[j];
e /= n2 - n1 + 1;
fprintf( c->fo, " %.2e", e);
}
fprintf( c->fo, "\n");
fflush( c->fo);
 
c->peak = c->sum_sq = 0;
}
 
void output_records( void)
{
struct timeval tv;
struct tm *tm;
double fsecs;
time_t ud;
char prefix[100];
 
gettimeofday( &tv, NULL);
fsecs = tv.tv_sec + 1e-6 * tv.tv_usec;
ud = tv.tv_sec - tv.tv_sec % 86400;
tm = gmtime( &ud);
sprintf( prefix, "%s/%02d%02d%02d", datadir,
tm->tm_year - 100, tm->tm_mon+1, tm->tm_mday);
 
output_record( &left, prefix, fsecs);
if( mode == 2) output_record( &right, prefix, fsecs);
}
 
void check_los( struct CHAN *c)
{
if( !c->los_state)
{
if( !c->los_time && c->peak < los_thresh) time( &c->los_time);
if( c->los_time && c->peak > los_thresh) c->los_time = 0;
if( c->los_time && c->los_time + los_timeout < time( NULL))
{
c->los_state = 1;
c->los_time = 0;
if( mode == 1) alert( "loss of signal");
else alert( "loss of signal on %s", c->name);
}
}
else
{
if( !c->los_time && c->peak > los_thresh) time( &c->los_time);
if( c->los_time && c->peak < los_thresh) c->los_time = 0;
if( c->los_time && c->los_time + los_timeout < time( NULL))
{
c->los_state = 0;
c->los_time = 0;
if( mode == 1) alert( "signal restored");
else alert( "signal restored on %s", c->name);
}
}
}
 
///////////////////////////////////////////////////////////////////////////////
// Signal Processing //
///////////////////////////////////////////////////////////////////////////////
 
void process_fft( struct CHAN *c)
{
int i;
 
//
// Do the FFT. First time through, initialise the fft plan.
//
 
if( !c->ffp)
c->ffp = fftw_plan_dft_r2c_1d( FFTWID, c->fft_inbuf, c->fft_data,
FFTW_ESTIMATE | FFTW_DESTROY_INPUT);
 
fftw_execute( c->ffp);
 
//
// Obtain squared amplitude of each bin.
//
 
c->powspec[ 0] = 0.0; // Zero the DC component
for( i=1; i<BINS; i++)
{
double t1 = c->fft_data[ i][0];
double t2 = c->fft_data[ i][1];
c->powspec[ i] = t1*t1 + t2*t2;
}
 
//
// Accumulate average signal levels in each bin. signal_avg is used
// only for the spectrum file output.
//
 
for( i=0; i<BINS; i++) c->signal_avg[ i] += c->powspec[i];
check_los( c);
}
 
void insert_sample( struct CHAN *c, double f)
{
c->sum_sq += f * f;
if( f > c->peak) c->peak = f;
if( f < -c->peak) c->peak = -f;
 
c->fft_inbuf[ grab_cnt] = f * sin( grab_cnt/(double) FFTWID * M_PI);
}
 
void maybe_do_fft( void)
{
if( ++grab_cnt < FFTWID) return;
grab_cnt = 0;
 
process_fft( &left);
if( mode == 2) process_fft( &right);
 
output_records();
maybe_output_spectrum();
}
 
//
// Main signal processing loop. Never returns.
//
 
void process_signal( void)
{
unsigned char buff[ NREAD];
 
while( 1)
{
int i, q;
 
if( (q=read( fdi, buff, NREAD)) <= 0)
{
if( !q || errno == ENOENT || errno == 0)
{
sched_yield();
usleep( 50000);
continue;
}
 
report( 0, "input file: read error, count=%d errno=%d", q, errno);
exit( 1);
}
 
// Unpack the input buffer into signed 16 bit words.
// then scale to -1..+1 for further processing.
// We use 'chans' to decide if the soundcard is giving stereo or
// mono samples, rather than 'mode', because some cards will refuse
// to do mono.
if( bits == 16)
{
if( chans == 1)
{
for( i=0; i<q; i += 2)
{
int fh = *(short *)(buff + i);
insert_sample( &left, fh/32768.0);
maybe_do_fft();
}
}
else // chans must be 2
{
if( mode == 1)
for( i=0; i<q; i += 4)
{
int fh = *(short *)(buff + i);
insert_sample( &left, fh/32768.0);
maybe_do_fft();
}
else // mode == 2
for( i=0; i<q; i += 4)
{
int fh = *(short *)(buff + i);
insert_sample( &left, fh/32768.0);
fh = *(short *)(buff + i + 2);
insert_sample( &right, fh/32768.0);
maybe_do_fft();
}
}
}
else // bits must be 8
{
if( chans == 1)
{
for( i=0; i<q; i++)
{
int fh = ((short)buff[i] - 128)*256;
insert_sample( &left, fh/32768.0);
maybe_do_fft();
}
}
else // chans must be 2
{
if( mode == 1)
for( i=0; i<q; i += 2)
{
int fh = ((short)buff[i] - 128)*256;
insert_sample( &left, fh/32768.0);
maybe_do_fft();
}
else // mode == 2
for( i=0; i<q; i += 2)
{
int fh = ((short)buff[i] - 128)*256;
insert_sample( &left, fh/32768.0);
fh = ((short)buff[i+1] - 128)*256;
insert_sample( &right, fh/32768.0);
maybe_do_fft();
}
}
}
}
}
 
///////////////////////////////////////////////////////////////////////////////
// Configuration File Stuff //
///////////////////////////////////////////////////////////////////////////////
 
void config_band( char *ident, char *start, char *end)
{
struct BAND *b = bands + nbands++;
 
if( nbands == MAXBANDS) bailout( "too many bands specified in config file");
 
strcpy( b->ident, ident);
b->start = atoi( start);
b->end = atoi( end);
 
report( 1, "band %s %d %d", b->ident, b->start, b->end);
}
 
void load_config( void)
{
int lino = 0, nf;
FILE *f;
char buff[100], *p, *fields[20];
 
if( (f=fopen( CONFIG_FILE, "r")) == NULL)
bailout( "no config file found");
 
while( fgets( buff, 99, f))
{
lino++;
 
if( (p=strchr( buff, '\r')) != NULL) *p = 0;
if( (p=strchr( buff, '\n')) != NULL) *p = 0;
if( (p=strchr( buff, ';')) != NULL) *p = 0;
 
p = buff; nf = 0;
while( 1)
{
while( *p && isspace( *p)) p++;
if( !*p) break;
fields[nf++] = p;
while( *p && !isspace( *p)) p++;
if( *p) *p++ = 0;
}
if( !nf) continue;
 
if( nf == 4 && !strcasecmp( fields[0], "band"))
config_band( fields[1], fields[2], fields[3]);
else
if( nf == 2 && !strcasecmp( fields[0], "logfile"))
{
strcpy( logfile, fields[1]);
report( 1, "logfile %s", logfile);
}
else
if( nf == 3 && !strcasecmp( fields[0], "los"))
{
los_thresh = atof( fields[1]);
los_timeout = atoi( fields[2]);
report( 1, "los threshold %.3f, timeout %d seconds",
los_thresh, los_timeout);
}
else
if( nf == 2 && !strcasecmp( fields[0], "device"))
strcpy( device, fields[1]);
else
if( nf == 2 && !strcasecmp( fields[0], "mixer"))
strcpy( mixer, fields[1]);
else
if( nf == 2 && !strcasecmp( fields[0], "mode"))
{
if( !strcasecmp( fields[1], "mono")) mode = 1;
else
if( !strcasecmp( fields[1], "stereo")) mode = 2;
else
bailout( "error in config file, line %d", lino);
}
else
if( nf == 2 && !strcasecmp( fields[0], "bits"))
{
bits = atoi( fields[1]);
if( bits != 8 && bits != 16)
bailout( "can only do 8 or 16 bits, config file line %d", lino);
}
else
if( nf == 3 && !strcasecmp( fields[0], "spectrum"))
{
strcpy( spectrum_file, fields[1]);
spec_max = atoi( fields[2]);
}
else
if( nf == 2 && !strcasecmp( fields[0], "sched")
&& !strcasecmp( fields[1], "high"))
{
priority = 1;
}
else
if( nf == 4 && !strcasecmp( fields[0], "gain"))
{
int left = atoi( fields[2]);
int right = atoi( fields[3]);
int gain = (right << 8) | left;
 
if( !strcasecmp( fields[1], "line")) req_lgain = gain;
else
if( !strcasecmp( fields[1], "overall")) req_igain = gain;
else
if( !strcasecmp( fields[1], "record")) req_rgain = gain;
else
bailout( "unknown gain control [%s]", fields[1]);
}
else
if( nf == 2 && !strcasecmp( fields[0], "rate"))
sample_rate = atoi( fields[1]);
else
if( nf == 2 && !strcasecmp( fields[0], "bins"))
BINS = atoi( fields[1]);
else
if( nf == 2 && !strcasecmp( fields[0], "datadir"))
{
struct stat st;
strcpy( datadir, fields[1]);
if( stat( datadir, &st) < 0 || !S_ISDIR( st.st_mode))
bailout( "no data directory, %s", datadir);
}
else
bailout( "error in config file, line %d", lino);
}
 
fclose( f);
}
 
///////////////////////////////////////////////////////////////////////////////
// Mixer Stuff //
///////////////////////////////////////////////////////////////////////////////
 
// Actual mixer values, read by open_mixer()
int mixer_recmask; // Recording device mask
int mixer_stereo; // Stereo device mask
int mixer_line; // Line input gain setting
int mixer_igain; // Overall input gain setting
int mixer_reclev; // Recording level setting
int mixer_recsrc; // Mask indicating which inputs are set to record
 
void open_mixer( void)
{
if( (fdm = open( mixer, O_RDWR)) < 0)
bailout( "cannot open [%s]: %s", mixer, strerror( errno));
 
// Determine the available mixer recording gain controls.
// We must at least have a line input.
 
if( ioctl( fdm, SOUND_MIXER_READ_RECMASK, &mixer_recmask) < 0)
bailout( "cannot read mixer devmask");
 
if( (mixer_recmask & SOUND_MASK_LINE) == 0)
bailout( "mixer has no line device");
 
if( ioctl( fdm, SOUND_MIXER_READ_STEREODEVS, &mixer_stereo) < 0)
bailout( "cannot read mixer stereodevs");
 
if( ioctl( fdm, SOUND_MIXER_READ_RECSRC, &mixer_recsrc) < 0)
bailout( "cannot read mixer recsrc");
 
// Read the line input gain.
if( ioctl( fdm, SOUND_MIXER_READ_LINE, &mixer_line) < 0)
bailout( "cannot read mixer line");
 
// Read overall input gain? Optional.
if( (mixer_recmask & SOUND_MASK_IGAIN) &&
ioctl( fdm, SOUND_MIXER_READ_IGAIN, &mixer_igain) < 0)
bailout( "cannot read mixer igain");
 
// Read overall recording level? Optional.
if( (mixer_recmask & SOUND_MASK_RECLEV) &&
ioctl( fdm, SOUND_MIXER_READ_RECLEV, &mixer_reclev) < 0)
bailout( "cannot read mixer reclev");
}
 
void report_mixer_settings( void)
{
report( 1, "mixer: line input is %s",
mixer_stereo & SOUND_MASK_LINE ? "stereo" : "mono");
 
report( 1, "mixer: line input is %s",
mixer_recsrc & SOUND_MASK_LINE ? "on" : "off");
 
report( 1, "mixer: line input gain: left=%d right=%d",
mixer_line & 0xff, (mixer_line >> 8) & 0xff);
 
// Overall input gain? Optional.
if( mixer_recmask & SOUND_MASK_IGAIN)
{
report( 1, "mixer: igain: left=%d right=%d",
mixer_igain & 0xff, (mixer_igain >> 8) & 0xff);
}
else report( 1, "mixer: igain: n/a");
 
// Overall recording level? Optional.
if( mixer_recmask & SOUND_MASK_RECLEV)
{
report( 1, "mixer: reclev: left=%d right=%d",
mixer_reclev & 0xff, (mixer_reclev >> 8) & 0xff);
}
else report( 1, "mixer: reclev: n/a");
 
}
 
void setup_mixer( void)
{
if( req_lgain >= 0)
{
report( 1, "requesting line input gains left=%d right=%d",
req_lgain & 0xff, (req_lgain >> 8) & 0xff);
 
if( ioctl( fdm, SOUND_MIXER_WRITE_LINE, &req_lgain) < 0 ||
ioctl( fdm, SOUND_MIXER_READ_LINE, &mixer_line) < 0)
bailout( "error setting mixer line gain");
 
report( 1, "line input gains set to: left=%d right=%d",
mixer_line & 0xff, (mixer_line >> 8) & 0xff);
}
 
if( req_igain >= 0 &&
(mixer_recmask & SOUND_MASK_IGAIN))
{
report( 1, "requesting overall input gains left=%d right=%d",
req_igain & 0xff, (req_igain >> 8) & 0xff);
 
if( ioctl( fdm, SOUND_MIXER_WRITE_IGAIN, &req_igain) < 0 ||
ioctl( fdm, SOUND_MIXER_READ_IGAIN, &mixer_igain) < 0)
bailout( "error setting mixer overall input gain");
 
report( 1, "overall input gains set to: left=%d right=%d",
mixer_igain & 0xff, (mixer_igain >> 8) & 0xff);
}
 
if( req_rgain >= 0 &&
(mixer_recmask & SOUND_MASK_RECLEV))
{
report( 1, "requesting overall record levels left=%d right=%d",
req_rgain & 0xff, (req_rgain >> 8) & 0xff);
 
if( ioctl( fdm, SOUND_MIXER_WRITE_RECLEV, &req_rgain) < 0 ||
ioctl( fdm, SOUND_MIXER_READ_RECLEV, &mixer_reclev) < 0)
bailout( "error setting mixer record level");
 
report( 1, "mixer record levels set to: left=%d right=%d",
mixer_reclev & 0xff, (mixer_reclev >> 8) & 0xff);
}
 
mixer_recsrc = SOUND_MASK_LINE;
if( ioctl( fdm, SOUND_MIXER_WRITE_RECSRC, &mixer_recsrc) < 0)
bailout( "cannot set mixer recsrc to line");
}
 
///////////////////////////////////////////////////////////////////////////////
// Main //
///////////////////////////////////////////////////////////////////////////////
 
void make_daemon( void)
{
int childpid, fd;
 
if( (childpid = fork()) < 0)
bailout( "cannot fork: %s", strerror( errno));
else if( childpid > 0) exit( 0);
 
if( setpgrp() == -1) bailout( "cannot setpgrp");
 
if( (childpid = fork()) < 0)
bailout( "cannot fork: %s", strerror( errno));
else if( childpid > 0) exit( 0);
 
for( fd = 0; fd <NOFILE; fd++) if( fd != fdi) close( fd);
errno = 0;
background = 2;
}
 
void initialise_channel( struct CHAN *c)
{
int i;
 
c->fft_inbuf = (double *) malloc( BINS * 2 * sizeof( double));
c->fft_data = fftw_malloc( sizeof( fftw_complex) * FFTWID);
c->powspec = (double *) malloc( BINS * sizeof( double));
c->signal_avg = (double *) malloc( BINS * sizeof( double));
for( i=0; i<BINS; i++) c->signal_avg[i] = 0;
}
 
void setup_signal_handling( void)
{
sa.sa_handler = handle_sigs;
sigemptyset( &sa.sa_mask);
sa.sa_flags = 0;
sigaction( SIGINT, &sa, NULL);
sigaction( SIGTERM, &sa, NULL);
sigaction( SIGHUP, &sa, NULL);
sigaction( SIGQUIT, &sa, NULL);
sigaction( SIGFPE, &sa, NULL);
sigaction( SIGBUS, &sa, NULL);
sigaction( SIGSEGV, &sa, NULL);
}
 
// Set scheduling priority to the minimum SCHED_FIFO value.
void set_scheduling( void)
{
struct sched_param pa;
int min = sched_get_priority_min( SCHED_FIFO);
 
pa.sched_priority = min;
if( sched_setscheduler( 0, SCHED_FIFO, &pa) < 0)
report( -1, "cannot set scheduling priority: %s", strerror( errno));
else
report( 0, "using SCHED_FIFO priority %d", min);
}
 
int main( int argc, char *argv[])
{
while( 1)
{
int c = getopt( argc, argv, "vfm");
 
if( c == 'v') VFLAG++;
else
if( c == 'm') MFLAG++;
else
if( c == 'f') background = 0;
else if( c == -1) break;
else bailout( "unknown option [%c]", c);
}
 
setup_signal_handling();
load_config();
open_mixer();
 
if( MFLAG)
{
VFLAG = 1;
background = 0;
report_mixer_settings();
exit( 0);
}
 
setup_mixer();
if( background && !logfile[0])
report( -1, "warning: no logfile specified for daemon");
 
setup_input_stream();
DF = (double) sample_rate/(double) FFTWID;
 
report( 1, "resolution: bins=%d fftwid=%d df=%f", BINS, FFTWID, DF);
report( 1, "spectrum file: %s", spectrum_file);
 
initialise_channel( &left);
if( mode == 2) initialise_channel( &right);
 
if( background) make_daemon();
if( priority) set_scheduling();
 
report( 0, "sidd version %s: starting work", VERSION);
alert_on = 1;
process_signal();
return 0;
}
 
/programy/avr32/SID/sidd.conf
0,0 → 1,75
; Specify a file into which sidd will write messages.
logfile ./sidd.log
 
; The input device and mixer
device /dev/dsp
mixer /dev/mixer
 
; Specify the mode of operation - stereo or mono. In stereo mode,
; sidd will run two independent monitors, each with its own output file.
 
mode stereo
 
; The requested sample rate. The software will use the closest
; setting available from the soundcard.
rate 48000
 
; Sample size, 8 or 16 bits. 16 bits is strongly recommended, 8 bit is
; provided in case your soundcard or driver doesn't do 16.
 
bits 16
 
; Number of frequency bins to use. The FFT size is 2*bins and the program
; will issue an output record every (2*bins)/rate seconds.
bins 2048
 
; Line input gains, left and right. If using mono, set them both the same.
; Range is 0 to 100. The logfile will report the actual values set, which
; may differ a little.
gain line 77 100
 
; Overall input gains, comments as above.
gain overall 86 100
 
; Overall record level, comments as above.
;; gain record 100 100
 
; Specify a directory to contain daily data files. Use '.' for the
; current directory. Output files will be datadir/yymmdd.dat when running
; in mono, otherwise datadir/yymmdd.left.dat and datadir/yymmdd.right.dat
datadir .
 
; Enable real time scheduling of sidd. Recommended so that soundcard buffers
; are read promptly, which means minimum latency before each fft buffer is
; timestamped. You have to be running as root for this to work.
sched high
 
; Specify the email address of whoever is to get any bad news.
; mail someone@someplace
 
; The loss-of-signal warning threshold and time delay. If the input
; signal peak level (0-1.0) falls below the given threshold for more than
; the delay time, a warning will be issued. The threshold applies to both
; left and right in stereo mode, on the assumption that you've set the gains
; so that the signal levels are about the same anyway.
los 0.06 5
 
; Specify a file into which spectrum data will regularly be written.
; This file is overwritten with a fresh spectrum roughly every
; 100 * 2 * bins/rate seconds. The spectrum file contains three space
; separated columns: bin centre frequency (Hz) and the average power
; in the bin (relative), for the left and right channels. In mono mode,
; there are just two columns
spectrum /tmp/sidspec 100
 
; Specify the channels to monitor. The ident field is not actually used by
; sidd.
;
; ident from to
band 18k3HWU 18200 18400 ; Le Blanc, France, 46:37N 001:05E 162.8 deg 508.6 miles
band 19k6GBZ 19480 19680 ; Anthorn, UK 54:54n 003:18W 329.6 deg 96.4 miles
band 22k1GBZ 22050 22150 ; Skelton, UK, 54:42:24N 2:53:06W 335.0 deg 76.7 miles
band 20k3ICV 20190 20340 ; Tavolara, Italy, 40:55N 009:45E 143.4 deg 1038.8 miles
band B1 20800 21000 ; Background channel
band B2 22650 22850 ; Background channel